Inverse moment problem for elementary co-adjoint orbits
نویسندگان
چکیده
We give a solution to the inverse moment problem for a certain class of Hessenberg and symmetric matrices related to integrable lattices of Toda type.
منابع مشابه
Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions
We consider the class of biorthogonal polynomials that are used to solve the inverse spectral problem associated to elementary co-adjoint orbits of the Borel group of upper triangular matrices; these orbits are the phase space of generalized integrable lattices of Toda type. Such polynomials naturally interpolate between the theory of orthogonal polynomials on the line and orthogonal polynomial...
متن کاملInverse problem for Sturm-Liouville operators with a transmission and parameter dependent boundary conditions
In this manuscript, we consider the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. We prove by defining a new Hilbert space and using spectral data of a kind, the potential function can be uniquely determined by a set of value of eigenfunctions at an interior point and p...
متن کاملSimultaneous estimation of heat fluxes applied to the wall of a channel with turbulent flow using inverse analysis
The main purpose of this study is to estimate the step heat fluxes applied to the wall of a two-dimensional symmetric channel with turbulent flow. For inverse analysis, conjugate gradient method with adjoint problem is used. In order to calculate the flow field, two equation model is used. In this study, adjoint problem is developed to conduct an inverse analysis of heat transfer in a channel...
متن کاملInverse Sturm-Liouville problems with a Spectral Parameter in the Boundary and transmission conditions
In this manuscript, we study the inverse problem for non self-adjoint Sturm--Liouville operator $-D^2+q$ with eigenparameter dependent boundary and discontinuity conditions inside a finite closed interval. By defining a new Hilbert space and using its spectral data of a kind, it is shown that the potential function can be uniquely determined by part of a set of values of eigenfunctions at som...
متن کاملMagnetic Flows on Homogeneous Spaces∗
We consider magnetic geodesic flows of the normal metrics on a class of homogeneous spaces, in particular (co)adjoint orbits of compact Lie groups. We give the proof of the non-commutative integrability of flows and show, in addition, for the case of (co)adjoint orbits, the usual Liouville integrability by means of analytic integrals. We also consider the potential systems on adjoint orbits, wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008